Ray-based seismic modeling of geologic models: Understanding and analyzing seismic images efficiently

Author:

Lecomte Isabelle1,Lavadera Paul Lubrano2,Anell Ingrid3,Buckley Simon J.4,Schmid Daniel W.3,Heeremans Michael3

Affiliation:

1. NORSAR, Kjeller, Norway and University of Oslo, Department of Geosciences, Oslo, Norway..

2. NORSAR, Kjeller, Norway..

3. University of Oslo, Department of Geosciences, Oslo, Norway..

4. Uni Research, CIPR, Bergen, Norway..

Abstract

Often, interpreters only have access to seismic sections and, at times, well data, when making an interpretation of structures and depositional features in the subsurface. The validity of the final interpretation is based on how well the seismic data are able to reproduce the actual geology, and seismic modeling can help constrain that. Ideally, modeling should create complete seismograms, which is often best achieved by finite-difference modeling with postprocessing to produce synthetic seismic sections for comparison purposes. Such extensive modeling is, however, not routinely affordable. A far more efficient option, using the simpler 1D convolution model with reflectivity logs extracted along verticals in velocity models, generates poor modeling results when lateral velocity variations are expected. A third and intermediate option is to use the various ray-based approaches available, which are efficient and flexible. However, standard ray methods, such as the normal-incidence point for unmigrated poststack sections or image rays for simulating time-migrated poststack results, cannot deal with complex and detailed targets, and will not reproduce the realistic (3D) resolution effects of seismic imaging. Nevertheless, ray methods can also be used to estimate 3D spatial prestack convolution operators, so-called point-spread functions. These are functions of the survey, velocity model, and wavelet, among others, and therefore they include 3D angle-dependent illumination and resolution effects. Prestack depth migration images are thus rapidly simulated by spatial convolution with detailed 3D reflectivity models, which goes far beyond the limits of 1D convolution modeling. This 3D convolution modeling should allow geologists to better assess their interpretations and draw more definitive conclusions.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3