Seismic modeling of gas chimneys

Author:

Arntsen Børge1,Wensaas Lars1,Løseth Helge1,Hermanrud Christian1

Affiliation:

1. Statoil, Trondheim, Norway.

Abstract

We propose a simple acoustic model explaining the main features of gas chimneys. The main elements of the model consist of gas diffusing from a connected fracture network and into the surrounding shale creating an inhomogeneous gas saturation. The gas saturation results in an inhomogeneous fluctuating compressional velocity field that distorts seismic waves. We model the fracture network by a random-walk process constrained by maximum fracture length and angle of the fracture with respect to the vertical. The gas saturation is computed from a simple analytical solution of the diffusion equation, and pressure-wave velocities are locally obtained assuming that mixing of shale and gas occurs on a scale much smaller than seismic wavelengths. Synthetic seismic sections are then computed using the resulting inhomogeneous velocity model and shown to give rise to similar deterioration in data quality as that found in data from real gas chimneys. Also, synthetic common-midpoint (CMP) gathers show the same distorted and attenuated traveltime curves as those obtained from a real data set. The model shows clearly that the features of gas chimneys change with geological time (a model parameter in our approach), the deterioration of seismic waves being smallest just after the creation of the gas chimney. It seems likely that at least some of the features of gas chimneys can be explained by a simple elastic model in combination with gas diffusion from a fracture network.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference25 articles.

1. Finite‐difference modeling of faults and fractures

2. Dangerfield, J. A. , 1992, Ekofisk field development, Making images of a gas obscured reservoir, in R. E. Sheriff, ed. Reservoir Geophysics: SEG, 98–109.

3. D’Heur, M., 1987, Albuskjell, in A. M. Spencer, ed. Geology of the Norwegian oil and gas fields: Graham & Trotman Ltd. 39–50.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3