Waveform joint inversion of seismograms and electrograms for moment tensor characterization of fracking events

Author:

Mahardika H.1,Revil A.2,Jardani A.3

Affiliation:

1. Colorado School of Mines, Department of Geophysics, Golden, Colorado, USA..

2. Colorado School of Mines, Department of Geophysics, Golden, Colorado, USA; Université de Savoie, Le Bourget du Lac, France..

3. Université de Rouen, Morphodynamique Continentale et Côtière, Mont Saint Aignan, France..

Abstract

Electromagnetic signals have been observed in association with fracking experiments in the laboratory, and in the field. We have developed a seismoelectric forward modeling approach to produce synthetic seismograms and electrograms generated by fracking events using the finite-element method with perfect matched-layer boundary conditions. The poroelastodynamic equations are solved in the frequency domain using a formulation based on the solid phase displacement and the pore pressure. These results are used to compute the electrical field disturbances of electrokinetic nature. Three types of electrical signals are generated: Type I disturbance is associated with the seismic source itself, Type II disturbance corresponds to seismoelectric conversions, and Type III corresponds to coseismic signals. This model is applied to simulate the seismic and electrical signals corresponding to the occurrence of a fracking event in a two-layers system. We perform a stochastic joint inversion of the seismograms and electrograms using the adaptive Metropolis algorithm (AMA) to obtain the posterior probability density functions of the parameters characterizing the seismic source assuming that the velocity model is perfectly known. The joint waveform inversion is performed on synthetic noise-free data and the AMA algorithm is successful in retrieving the true values of the unknown parameters. The proposed approach is then tested on the same synthetic data after being contaminated with 15% random noise with respect to the maximum amplitude of the signals. The model parameters are better determined for the joint inversion of seismic and electrical data by comparison with the inversion of the seismic time-series alone. We also propose a deterministic tomographic algorithm that is successful in locating the in situ source current density distribution for Types I and II anomalies from the electrical data alone.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3