Identification of the seismoelectric field induced by a slow compressional wave at an ultrasonic frequency

Author:

Wang Jun1ORCID,Gao Yongxin2ORCID,Guan Wei3ORCID,Hu Hengshan1ORCID

Affiliation:

1. Harbin Institute of Technology, Department of Astronautical Science and Mechanics, Harbin, China.

2. Hefei University of Technology, School of Civil Engineering, Hefei, China.

3. Harbin Institute of Technology, Department of Astronautical Science and Mechanics, Harbin, China. (corresponding author)

Abstract

Theoretical studies predict that a slow compressional wave propagating in a fluid-saturated porous medium can produce a coseismic electric field due to the electrokinetic effect, but the experimental proof is still lacking. Laboratory experiments are conducted to measure such a seismoelectric conversion inside a synthetic rock. Fluid pressure signals are recorded by using mini hydrophones 1.6 mm in diameter, and then electric field signals generated at the liquid-solid interface and inside the rock sample based on the seismoelectric effect are recorded by electrode arrays, respectively. The seismoelectric waves induced by fast and slow compressional waves can be clearly identified in the recorded electric signals and their attenuation properties are analyzed at an ultrasonic frequency, which confirms that the seismoelectric signals induced by fast/slow compressional waves are measurable in the experiments. To support our explanation of the experimental observation, theoretical simulations are conducted according to the experimental model and then compared with the recorded experimental data. The results find that the simulated wavefields are in excellent agreement with those signals measured in the measurements, which proves the theoretical prediction of the seismoelectric signal accompanying the slow compressional wave and suggests a feasible way for detecting the slow compressional wave property with seismoelectric conversions in field measurements.

Funder

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3