Real-time completion monitoring with acoustic waves

Author:

Bakulin Andrey12,Sidorov Alexander12,Kashtan Boris12,Jaaskelainen Mikko12

Affiliation:

1. Shell International Exploration & Production Inc., Houston, Texas, U.S.A. .

2. Saint Petersburg State University, Saint Petersburg, Russia. .

Abstract

Deepwater production is challenged by well underperformance issues that are hard to diagnose early on and expensive to deal with later. Problems are amplified by reliance on a few complex wells with sophisticated sand-control media. New downhole data are required for better understanding and prevention of production impairment. We introduce real-time completion monitoring (RTCM), a new nonintrusive surveillance method that uses acoustic signals sent via the fluid column to identify permeability impairment in sand-screened completions. The signals are carried by tube waves that move borehole fluid back and forth radially across the completion layers. Such tube waves are capable of instant testing of the presence or absence of fluid communication across the completion and are sensitive to changes occurring in sand screens, gravel sand, perforations, and possibly in the reservoir. The part of the completion that has different impairment from its neighbors will carry tube waves with modified signatures (velocity, attenuation) and will produce a reflection from the boundary where impairment changes. We conduct a laboratory experiment with a model of a completed horizontal borehole and focus on effects of sand-screen permeability on transmitted and reflected acoustic signatures. These new findings form the basis of an RTCM method that can be thought of as “miniaturized” 4D seismic and as a “permanent log” in an individual wellbore. We present experiments with a fiber-optic acoustic system that suggest a nonintrusive way to install downhole sensors on the pipe in realistic completions and thus implement real-time surveillance with RTCM.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3