Sensitivity analysis of data-related factors controlling AVA simultaneous inversion of partially stacked seismic amplitude data: Application to deepwater hydrocarbon reservoirs in the central Gulf of Mexico

Author:

Contreras Arturo123,Torres-Verdín Carlos123,Fasnacht Tim123

Affiliation:

1. Chevron Energy Technology Company, Earth Sciences Technology Department, Reservoir Characterization Unit, 1500 Louisiana, Houston, Texas 77002.

2. University of Texas at Austin, Department of Petroleum and Geosystems Engineering, 1 University Station, Mail Stop C0300, Austin, Texas 78712. .

3. Anadarko Petroleum Corporation, 1201 Lake Robbins Drive, The Woodlands, Texas 77251. .

Abstract

We consider the inversion of synthetic and recorded seismic amplitude variation with angle AVA data to appraise the influence of several data-related factors that control the vertical resolution and accuracy of the estimated spatial distributions of elastic properties. We use measurements acquired in deepwater hydrocarbon reservoirs in the central Gulf of Mexico to generate synthetic seismic amplitude data and evaluate inversion results with both synthetic and recorded seismic amplitudes. Detailed sensitivity analysis of synthetic amplitude data indicates that, even in the most ideal scenario (perfectly migrated data, isotropic media, noise-free seismic amplitude data, sufficient far-angle coverage, and accurate estimates of angle-dependent wavelets and low-frequency components), input elastic models are not reconstructedaccurately by the inversion of synthetic seismic amplitudes. We attribute this result to the relatively low vertical resolution of the seismic amplitude data. P-wave impedance is the most accurate of the inverted properties, followed by S-impedance and bulk density. Additionally, sufficient far-angle coverage is crucial for the accurate estimation of 1D distributions of S-impedance and bulk density. We show that time alignment of partial-angle stacks for correcting residual NMO effects improves the vertical resolution of the estimated spatial distributions of elastic parameters and consistently decreases the data misfit. Finally, we found that the accuracy of the inverted distributions of elastic parameters is improved substantially by (1) increasing the preserved AVA information via multiple single-angle stacks, (2) correcting the P-wave velocity field used for calculating angles in partial-angle stacking, and (3) excluding far-angle data with low signal-to-noise ratios.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3