Fast model-based migration velocity analysis and reflector shape estimation

Author:

Fei Weihong1,McMechan George A.1

Affiliation:

1. University of Texas at Dallas, Center for Lithospheric Studies, P.O. Box 830688, Richardson, Texas 75083-0688..

Abstract

Migration velocity analysis can be made more efficient by preselecting the traces that contribute to a series of common-reflection-point (CRP) gathers and migrating only those traces. The data traces that contribute to a CRP for one reflection point on one layer are defined in a two-step procedure. First, poststack parsimonious Kirchhoff depth migration of zero-offset (or stacked) traces defines approximate reflector positions and orientations. Then, ray tracing from the reflection points for nonzero reflection angles defines the source and receiver locations of the data traces in the CRP gather. These traces are then prestack depth migrated, and the interval velocity model adjustment is obtained by fitting the velocity that maximizes the stack amplitude over the predicted (nonhyperbolic) moveout. A small number (2–3) of iterations converge to a 2D model of layer shape and interval velocity. Further efficiency is obtained by implementing layer stripping. The computation time is greatly reduced by combining parsimonious migration with processing only the salient portions of the whole seismic data set. The algorithm can handle lateral velocity variation within each layer as well as constant velocity. The computation time of the proposed algorithm is of the same order as that of the standard rms velocity scan method, but it does not have the inherent assumptions of the velocity scan method and is faster than current iterative prestack depth migration velocity analysis methods for typical field data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3