1. Atashnezhad, A., S. Akhtarmanesh, G. Hareland, and M. Al Dushaishi, 2021, Developing a drilling optimization system for improved overall rate of penetration in geothermal wells: U.S. Rock Mechanics/Geomechanics Symposium, ARMA-2021.
2. Applying Machine Learning to Predict the Rate of Penetration for Geothermal Drilling Located in the Utah FORGE Site
3. Biggio, L., T. Bendinelli, C. Kulkarni, and O. Fink, 2022, Dynaformer: A deep learning model for ageing-aware battery discharge prediction: arXiv preprint, doi: 10.48550/arXiv.2206.02555.
4. Bristol, J., S. Caldwell, V. Welch, P. Stroud, B. Williams-Mieding, P. Broderick, A. Schepflin, M. Van Gaal, T. Mozena, E. Rivas, G. Nash, J. McLennan, and D. Handwerger, 2021, Utah FORGE: Well 56-32 drilling data and logs, United States, Web, doi: 10.15121/1777170.
5. Gidh, Y., A. Purwanto, and S. Bits, 2012, Artificial neural network drilling parameter optimization system improves ROP by predicting/managing bit wear: SPE Intelligent Energy International Conference and Exhibition, SPE-149801.