Applying Machine Learning to Predict the Rate of Penetration for Geothermal Drilling Located in the Utah FORGE Site

Author:

Ben Aoun Mohamed ArbiORCID,Madarász Tamás

Abstract

Well planning for every drilling project includes cost estimation. Maximizing the rate of penetration (ROP) reduces the time required for drilling, resulting in reducing the expenses required for the drilling budget. The empirical formulas developed to predict ROP have limited field applications. Since real-time drilling data acquisition and computing technologies have improved over the years, we implemented the data-driven approach for this purpose. We investigated the potential of machine learning and deep learning algorithms to predict the nonlinear behavior of the ROP. The well was drilled to confirm the geothermal reservoir characteristics for the FORGE site. After cleaning and preprocessing the data, we selected two models and optimized their hyperparameters. According to our findings, the random forest regressor and the artificial neural network predicted the behavior of our field ROP with a maximum absolute mean error of 3.98, corresponding to 19% of the ROP’s standard deviation. A tool was created to assist engineers in selecting the best drilling parameters that increase the ROP for future drilling tasks. The tool can be validated with an existing well from the same field to demonstrate its capability as an ROP predictive model.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference44 articles.

1. Geothermal well drilling

2. Geothermal drilling cost and drilling effectiveness;Thorhallsson;Proceedings of the Short Course on Geothermal Development and Geothermal Wells,2012

3. Real-time predictive capabilities of analytical and machine learning rate of penetration (ROP) models

4. The "Perfect - Cleaning" Theory of Rotary Drilling

5. A real-time indicator for the evaluation of hole cleaning efficiency;Alawami;Proceedings of the SSPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3