Abstract
Well planning for every drilling project includes cost estimation. Maximizing the rate of penetration (ROP) reduces the time required for drilling, resulting in reducing the expenses required for the drilling budget. The empirical formulas developed to predict ROP have limited field applications. Since real-time drilling data acquisition and computing technologies have improved over the years, we implemented the data-driven approach for this purpose. We investigated the potential of machine learning and deep learning algorithms to predict the nonlinear behavior of the ROP. The well was drilled to confirm the geothermal reservoir characteristics for the FORGE site. After cleaning and preprocessing the data, we selected two models and optimized their hyperparameters. According to our findings, the random forest regressor and the artificial neural network predicted the behavior of our field ROP with a maximum absolute mean error of 3.98, corresponding to 19% of the ROP’s standard deviation. A tool was created to assist engineers in selecting the best drilling parameters that increase the ROP for future drilling tasks. The tool can be validated with an existing well from the same field to demonstrate its capability as an ROP predictive model.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference44 articles.
1. Geothermal well drilling
2. Geothermal drilling cost and drilling effectiveness;Thorhallsson;Proceedings of the Short Course on Geothermal Development and Geothermal Wells,2012
3. Real-time predictive capabilities of analytical and machine learning rate of penetration (ROP) models
4. The "Perfect - Cleaning" Theory of Rotary Drilling
5. A real-time indicator for the evaluation of hole cleaning efficiency;Alawami;Proceedings of the SSPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition,2019
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献