Estimates of velocity dispersion between seismic and ultrasonic frequencies

Author:

Winkler Kenneth W.1

Affiliation:

1. Schlumberger‐Doll Research, Old Quarry Road, Ridgefield, CT 06877

Abstract

It is generally accepted that acoustic velocities in fluid‐saturated rocks vary with frequency. Evidence comes from experimental measurements and from theoretical causality arguments. We have developed a simple analysis technique that gives estimates of total velocity dispersion between zero frequency and any measurement frequency. The technique requires compressional (P) and shear (S) wave velocity measurements on dry and fully saturated rock. Assuming that the dry velocities are independent of frequency, the Biot‐Gassmann equations are used to calculate the zero‐frequency velocities in the fully saturated rock. Any difference between the measured velocities and the calculated zero‐frequency velocities is interpreted as evidence of dispersion. Application of this analysis technique to a variety c ultrasonic data sets gives consistent results. In many rocks, dispersion between zero frequency and ultrasonic frequencies is on the order of 10 percent at low effective stress, and it decreases to only a few percent at higher stresses. Dispersion varies with degree of saturation and with fluid viscosity in the same way as do low‐frequency attenuation measurements. The results are readily interpreted in terms of the same local‐flow absorption/dispersion mechanism that has been used to explain recent laboratory attenuation measurements. This apparent dispersion places upper bounds on seismic‐to‐sonic velocity differences. It also points out possible discrepancies between seismic velocities and ultrasonic laboratory measurements.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 4D Seismic Inversion of Quality Factor and Velocity;Day 3 Thu, May 09, 2024;2024-05-07

2. Introducing the area under stress–velocity curve: Theory, measurement and association with rock properties;Geophysical Prospecting;2024-05-06

3. Time-lapse inversion of Q factor and velocity;Seventh International Conference on Engineering Geophysics, Al Ain, UAE, 16–19 October 2023;2024-03-12

4. Attenuation characteristics of shock waves in drilling and blasting based on viscoelastic wave theory;International Journal of Rock Mechanics and Mining Sciences;2023-11

5. Time-Lapse Inversion of Velocity and Q Factor;Day 2 Tue, October 03, 2023;2023-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3