Introducing the area under stress–velocity curve: Theory, measurement and association with rock properties

Author:

Sharifi Javad1ORCID

Affiliation:

1. Department of Geology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran

Abstract

AbstractSince many years ago, ultrasonic velocity has been used to investigate the physical and mechanical behaviour of rocks, thereby playing an important role in reservoir characterization and seismic interpretation. In order to develop the knowledge of ultrasonic tools, I performed a noble analysis on the ultrasonic behaviour of rocks under confining stress and evaluated a distinctive property of porous media that is measured as the area under the stress–velocity curve (here defined as S*). I further investigated its relationship with elastic and mechanical behaviours of rock. To validate the theoretical framework developed in this work, 20 core plugs from various rock units with complex microstructures were subjected to triaxial compressional tests to calculate their area under the curve. Calculations were made for crack‐closing, elastic and post‐elastic stages (e.g. pore collapse) along the ultrasonic velocity–stress curve. Moreover, the selected samples had their microstructure investigated by thin‐section studies to quantify their porosity and pore type. The results were analysed to check for the effect of pore type on S* in different stages of the stress–velocity curve. Based on the outputs of the analysis of variance and Pearson's correlation coefficient analysis, the curve had its shape and underlying area closely related to the porosity and pore geometry. Indeed, the results showed that the shale and sandstone with micro cracks and carbonate with stiff pores correspond to smaller and larger areas under the curve in crack‐closing and inelastic stages, respectively. Cross‐correlating the results to compressibility (inverse of bulk modulus), it was figured out that the calculated area under curve was well consistent with the compressibility. In addition, S* represents both static and dynamic behaviours of the rock, and the results revealed that the shape and curvature of the stress–velocity curve give valuable information about the rock microstructure. Another finding was the fact that the type of fluid and wave velocity seemingly affect the S*. Our findings can help interpret wave velocity behaviour in reservoir rocks and other stressful porous media.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3