Machine-learning-based automatic well-log completion and generation: Examples from the Ordos Basin, China

Author:

Guan Ziheng1ORCID,Tang Xuan2ORCID,Ran Bo3,Guo Shaobin1ORCID,Zhang Jinchuan1ORCID,Du Kefeng1,Jia Ting4

Affiliation:

1. China University of Geosciences, Ministry of Natural Resources, Key Laboratory of Shale Gas Exploration and Evaluation, Beijing, China.

2. China University of Geosciences, Ministry of Natural Resources, Key Laboratory of Shale Gas Exploration and Evaluation, Beijing, China. (corresponding author)

3. Research Institute of Exploration and Development of Petro China Liaohe Oilfield Company, Panjin, China.

4. Wuji Data Technology (Beijing) Co. Ltd., Beijing, China.

Abstract

Oilfields have large amounts of old well-logging data, some of which were possibly lost or distorted for borehole situation, limiting the use of well-logging in formation evaluation. Machine-learning algorithms provide possibility to complete or correct bad quality logging, even to generate new loggings. We took 50 wells in the Ordos Basin, a prolific hydrocarbon production basin, as an example to complete and generate well- loggings. We applied three algorithms, such as random forest (RF), extreme gradient boosting (XGBoost), and deep neural network (DNN) algorithm, for well-logging curve completion experiments. We generated resistivity loggings including deep investigate lateral resistivity log (RILD) and medium investigate lateral resistivity log (RILM) using four loggings, e.g. the spontaneous potential (SP), gamma ray (GR), acoustic log (AC), and electrical resistivity log (R4). After data preprocessing, we used training data sets and validation data sets, accounting for 90% and 10% of all database, respectively, to complete and generate well-logs. The results reveal that the XGBoost algorithm has a better effect on well-log completion if the parameters used are sufficiently optimized with experience, whereas the DNN algorithm has great advantages if large sufficient amounts of well-log data sets are available in the training sets. In this experiment, the accuracy of results by RF algorithm is better than those by XGBoost algorithm because the optimized parameters are difficult to guarantee without experience, and better than that, by DNN algorithms in which the input number of wells is less than 300 and may not be sufficient. In addition, RF algorithm has wider expansibility, higher efficiency, lower computation requirements, and better generalization ability. Our work provides a better understanding of the conditions and function of the application of different machine-learning algorithms to well-logging completion and generation.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3