Seismic interpretation pitfalls caused by interference effects, exemplified by seismic modeling of outcropping chalk successions

Author:

Qu Dongfang1ORCID,Anderskouv Kresten2ORCID,Stemmerik Lars3ORCID,Nielsen Lars2ORCID

Affiliation:

1. University of Copenhagen, Department of Geosciences and Natural Resource Management, Copenhagen, Denmark. (corresponding author)

2. University of Copenhagen, Department of Geosciences and Natural Resource Management, Copenhagen, Denmark.

3. Geological Survey of Denmark and Greenland — GEUS, Copenhagen, Denmark.

Abstract

Interference and inherent resolution limitations are well-recognized problems in reflection seismic data and have over time led to misinterpretations. Acquisition of seismic data containing a broad range of frequencies, including high frequencies, does not solve this problem but merely moves the problem to a finer scale. Forward seismic modeling of known geologic scenarios is a valuable tool for studying anticipated seismic responses of successions with a given set of geologic and/or rock physical characteristics and for predicting interpretational challenges. We perform finite-difference-based seismic forward modeling on a conceptual geologic model derived from outcropping chalk sections in southeast Denmark and evaluate possible pitfalls that may hamper interpretation of seismic data acquired from strata with similar characteristics. We demonstrate that interbedded strata with contrasting physical properties and variable thickness can result in interference effects resembling faults and fractures. The result has significance for characterization, e.g., geothermal sites, potential CO2 storage targets, groundwater reservoirs, and hydrocarbon exploration sites, in which the proper imaging of faults and fractures from seismic data is an essential task.

Funder

DHRTC

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3