Using a synthetic data trained convolutional neural network for predicting subresolution thin layers from seismic data

Author:

Qu Dongfang1ORCID,Mosegaard Klaus2,Feng Runhai3ORCID,Nielsen Lars4ORCID

Affiliation:

1. University of Copenhagen, Department of Geosciences and Natural Resource Management, Copenhagen, Denmark and Ramboll Danmark A/S, Copenhagen, Denmark. (corresponding author)

2. University of Copenhagen, Niels Bohr Institute, Copenhagen, Denmark.

3. Aramco Asia, Beijing Research Center, Beijing, China and University of Copenhagen, Niels Bohr Institute, Copenhagen, Denmark.

4. University of Copenhagen, Department of Geosciences and Natural Resource Management, Copenhagen, Denmark.

Abstract

Numerous studies have demonstrated the capability of supervised deep learning techniques for predicting geological features of interest from seismic sections, including features that are difficult to identify using traditional interpretation methods. However, the successful application of these techniques in practice has been limited by the difficulty of obtaining a large training data set where the seismic data and corresponding ground truth labels are well-defined. Manually creating large amounts of labels requires a heavy workload, and the uncertainty of the interpretation and labeling process decreases the model’s ability for making accurate predictions. Using the chalk-flint sequence scenario onshore Denmark as an example, we have developed a novel workflow for predicting subresolution thin layers from seismic sections. It entails generating large quantities of synthetic training data with high-quality labels using stochastic geological modeling, training a convolutional neural network based on the synthetic data set, and applying it to real seismic data. This is, to our knowledge, the first example of using deep learning to predict subresolution thin layers from seismic data based on geostatistically generated training images. It is shown that a neural network trained on synthetic data can predict a realistic number of subresolution flint layers from the real seismic data that have been collected from the Stevns region in Denmark, which has value for the understanding of the overall geological characteristics of succession and engineering applications such as construction site evaluation.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3