Near‐surface seismic properties for elastic wavefield decomposition: Estimates based on multicomponent land and seabed recordings

Author:

Muijs Remco1,Robertsson O. A. Johan2,Curtis Andrew3,Holliger Klaus1

Affiliation:

1. Institute of Geophysics, Swiss Federal Institute of Technology, ETH‐Hönggerberg, CH‐8093 Zurich, Switzerland. Emails:

2. Schlumberger Cambridge Research, High Cross, Madingley Road, Cambridge CB3 0EL, United Kingdom.

3. Schlumberger Cambridge Research, High Cross, Madingley Road, Cambridge CB3 0EL, United Kingdom and School of GeoSciences, Edinburgh University, Edinburgh EH9 3JG, United Kingdom.

Abstract

Accurate knowledge of the seismic material properties in the immediate vicinity of the receivers represents a prerequisite for elastic wavefield decomposition. We present strategies for estimating the elastic material properties for both land and seabed multicomponent seismic data. The proposed scheme for land data requires dense multicomponent geophone configurations, which allow spatial wavefield derivatives to be explicitly calculated. The required information can be obtained with four three‐component surface geophones positioned at the corners of a square, and a fifth geophone buried at a shallow depth below the center of the square. The technique yields local estimates of the near‐surface P‐ and S‐wave velocities, but the density cannot be constrained. Using a similar approach for four‐component (three orthogonal components of particle velocity plus pressure) seabed recordings allows the P‐ and S‐wave velocities as well as the density of the seafloor to be estimated. In this case, the proposed scheme does not require buried geophones, and it is applicable to multicomponent data recorded in routine seabed surveys. Compared to existing techniques, the new method allows the elastic sea‐floor properties to be more accurately determined, and it does not rely critically on the inclusion of large‐offset data. Numerical tests indicate that the proposed schemes are robust and yield accurate results, provided that the signal used for the inversion contains sufficient horizontal energy and can be clearly identified and separated from other signals. Although the schemes are designed for application on the first arrivals, they are, in principle, applicable to any data window containing isolated P‐ or S‐arrivals. The proposed scheme is successfully applied to a seabed data set acquired in the North Sea. In contrast, the application on a multicomponent land data set was unsuccessful, because of strong receiver‐to‐receiver variations in amplitude and phase, probably caused by differences in coupling and instrument response.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3