Near-real-time near-surface 3D seismic velocity and uncertainty models by wavefield gradiometry and neural network inversion of ambient seismic noise

Author:

Cao Ruikun1,Earp Stephanie1ORCID,de Ridder Sjoerd A. L.2ORCID,Curtis Andrew1ORCID,Galetti Erica1

Affiliation:

1. University of Edinburgh, School of GeoSciences, Grant Institute of Earth Science, Edinburgh EH9 3FE, UK..

2. Formerly University of Edinburgh, School of GeoSciences, Grant Institute of Earth Science, Edinburgh EH9 3FE, UK; presently University of Leeds, School of Earth and Environment, Leeds LS2 9JT, UK.(corresponding author).

Abstract

With the advent of large and dense seismic arrays, novel, cheap, and fast imaging and inversion methods are needed to exploit the information captured by stations in close proximity to each other and produce results in near real time. We have developed a sequence of fast seismic acquisition for dispersion curve extraction and inversion for 3D seismic models, based on wavefield gradiometry, wave equation inversion, and machine-learning technology. The seismic array method that we use is Helmholtz wave equation inversion using measured wavefield gradients, and the dispersion curve inversions are based on a mixture of density neural networks (NNs). For our approach, we assume that a single surface wave mode dominates the data. We derive a nonlinear relationship among the unknown true seismic wave velocities, the measured seismic wave velocities, the interstation spacing, and the noise level in the signal. First with synthetic and then with the field data, we find that this relationship can be solved for unknown true seismic wave velocities using fixed point iterations. To estimate the noise level in the data, we need to assume that the effect of noise varies weakly with the frequency and we need to be able to calibrate the retrieved average dispersion curves with an alternate method (e.g., frequency wavenumber analysis). The method is otherwise self-contained and produces phase velocity estimates with tens of minutes of noise recordings. We use NNs, specifically a mixture density network, to approximate the nonlinear mapping between dispersion curves and their underlying 1D velocity profiles. The networks turn the retrieved dispersion model into a 3D seismic velocity model in a matter of seconds. This opens the prospect of near-real-time near-surface seismic velocity estimation using dense (and potentially rolling) arrays and only ambient seismic energy.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference46 articles.

1. Allmark, C., 2018, Analysing the Earth's near surface using ambient seismic noise: Ph.D. thesis, University of Edinburgh.

2. Seismic tomography with the reversible jump algorithm

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3