Affiliation:
1. The University of Texas at Austin, Bureau of Economic Geology, Austin, Texas 78758-4445..
Abstract
We discuss, in a two-part article, the benefits of 90°-phase wavelets in stratigraphic and lithologic interpretation of seismically thin beds. In Part 1, seismic models of Ricker wavelets with selected phases are constructed to assess interpretability of composite waveforms in increasingly complex geologic settings. Although superior for single surface and thick-layer interpretation, zero-phase seismic data are not optimal for interpreting beds thinner than a wavelength because their antisymmetric thin-bed responses tie to the reflectivity series rather than to impedance logs. Nonsymmetrical wavelets (e.g., minimum-phase wavelets) are generally not recommended for interpretation because their asymmetric composite waveforms have large side lobes. Integrated zero-phase traces are also less desirable because they lose high-frequency components in the integration process. However, the application of 90°-phase data consistently improves seismic interpretability. The unique symmetry of 90°-phase thin-bed response eliminates the dual polarity of thin-bed responses, resulting in better imagery of thin-bed geometry, impedance profiles, lithology, and stratigraphy. Less amplitude distortion and less stratigraphy-independent, thin-bed interference lead to more accurate acoustic impedance estimation from amplitude data and a better tie of seismic traces to lithology-indicative wireline logs. Field data applications are presented in part 2 of this article.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Reference16 articles.
1. Claerbout, J. F., 1976, Fundamentals of geophysical data processing: Blackwell Scientific Publications, Inc.
2. Effects of porosity and clay content on wave velocities in sandstones
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献