Effects of porosity and clay content on wave velocities in sandstones

Author:

Han De‐hua1,Nur A.1,Morgan Dale2

Affiliation:

1. Stanford Rock Physics Project, Department of Geophysics, Stanford University, Stanford, CA 94305

2. Stanford Rock Physics Project, Stanford University

Abstract

The ultrasonic compressional [Formula: see text] and shear [Formula: see text] velocities and first‐arrival peak amplitude [Formula: see text] were measured as functions of differential pressure to 50 MPa and to a state of saturation on 75 different sandstone samples, with porosities ϕ ranging from 2 to 30 percent and volume clay content C ranging from 0 to 50 percent, respectively. Both [Formula: see text] and [Formula: see text] were found to correlate linearly with porosity and clay content in shaly sandstones. At confining pressure of 40 MPa and pore pressure of 1.0 MPa, the best least‐squares fits to the velocity data are [Formula: see text] and [Formula: see text]. Deviations from these equations are less than 3 percent and 5 percent for [Formula: see text] and [Formula: see text], respectively. The velocities of clean sandstones are significantly higher than those predicted by the above linear fits (about 7 percent for [Formula: see text] and 11 percent for [Formula: see text]), which indicates that a very small amount of clay (1 or a few percent of volume fraction) significantly reduces the elastic moduli of sandstones. For shaly sandstones we conclude that, to first order, more sensitive to the porosity and clay content than is [Formula: see text]. Consequently, velocity ratios [Formula: see text] and their differences between fully saturated (s) and dry (d) samples also show clear correlation with the clay content and porosity. For shaly sandstones we conclude that, to first order, clay content is the next most important parameter to porosity in reducing velocities, with an effect which is about 0.31 for [Formula: see text] to 0.38 for [Formula: see text] that of the effect of porosity.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 871 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3