Nonlinear rock physics model for estimation of 3D subsurface stress in anisotropic formations: Theory and laboratory verification

Author:

Prioul Romain1,Bakulin Andrey2,Bakulin Victor3

Affiliation:

1. Formerly Schlumberger Cambridge Research, High Cross, Madingley Road, Cambridge CB3 0EL, United Kingdom; presently Schlumberger Doll Research, 36 Old Quarry Road, Ridgefield, Connecticut 06877.

2. Formerly Schlumberger Cambridge Research, High Cross, Madingley Road, Cambridge CB3 0EL, United Kingdom; presently Shell International Exploration and Production, 3737 Bellaire Boulevard, Houston, Texas 77025.

3. Geotechnologies Ltd., Houston, Texas.

Abstract

We develop a rock physics model based on nonlinear elasticity that describes the dependence of the effective stiffness tensor as a function of a 3D stress field in intrinsically anisotropic formations. This model predicts the seismic velocity of both P‐ and S‐waves in any direction for an arbitrary 3D stress state. Therefore, the model overcomes the limitations of existing empirical velocity‐stress models that link P‐wave velocity in isotropic rocks to uniaxial or hydrostatic stress. To validate this model, we analyze ultrasonic velocity measurements on stressed anisotropic samples of shale and sandstone. With only three nonlinear constants, we are able to predict the stress dependence of all five elastic medium parameters comprising the transversely isotropic stiffness tensor. We also show that the horizontal stress affects vertical S‐wave velocity with the same order of magnitude as vertical stress does. We develop a weak‐anisotropy approximation that directly links commonly measured anisotropic Thomsen parameters to the principal stresses. Each Thomsen parameter is simply a sum of corresponding background intrinsic anisotropy and stress‐induced contribution. The stress‐induced part is controlled by the difference between horizontal and vertical stresses and coefficients depending on nonlinear constants. Thus, isotropic rock stays isotropic under varying but hydrostatic load, whereas transversely isotropic rock retains the same values of dimensionless Thomsen parameters. Only unequal horizontal and vertical stresses alter anisotropy. Since Thomsen parameters conveniently describe seismic signatures, such as normal‐moveout velocities and amplitude‐variation‐with‐offset gradients, this approximation is suitable for designing new methods for the estimation of 3D subsurface stress from multicomponent seismic data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference32 articles.

1. Bakulin, A., and Bakulin, V., 1992, Method for determining rock mass burst danger: USSR Patent 1 786 273.

2. Bakulin, V., and Bakulin, A., 1999, Acoustopolarizational method of measuring stress in rock mass and determination of Murnaghan constants: 69th Annual International Meeting, SEG, Expanded Abstracts, 1971–1974.

3. Bakulin, V., and Protosenya, A., 1981, Ultrasonic polarizational method of determination of stress in rock mass: Mining Geophysics (in Russian), 96–97.

4. Estimation of fracture parameters from reflection seismic data—Part II: Fractured models with orthorhombic symmetry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3