Stress-dependent reflection and transmission of elastic waves under confining, uniaxial, and pure shear prestresses

Author:

Yang Haidi1ORCID,Fu Li-Yun2ORCID,Müller Tobias M.1ORCID,Fu Bo-Ye3ORCID

Affiliation:

1. China University of Petroleum (East China), National Key Laboratory of Deep Oil and Gas, Qingdao, China.

2. China University of Petroleum (East China), National Key Laboratory of Deep Oil and Gas, Qingdao, China and Pilot National Laboratory for Marine Science and Technology (Qingdao), Laboratory for Marine Mineral Resources, Qingdao, China. (corresponding author)

3. Beijing University of Technology, Faculty of Architecture, Civil and Transportation Engineering, Beijing, China.

Abstract

Insights into the reflection and transmission (R/T) of waves at a prestressed interface are important in geophysical applications, such as evaluating the angle-dependent elastic properties for monitoring geopressure and tectonic stress using sonic logging data or seismic data. Although many studies deal with wave propagation in prestressed media, the angle-dependent R/T of waves at an interface subject to different prestress loading modes remains largely unaddressed. We address this issue by applying the theory of acoustoelasticity with third-order acoustoelastic constants to study the R/T coefficients at the interface between two prestressed media. Stress-induced elastic deformations are assumed to be locally homogeneous without boundary dislocations caused by stress concentration so that the static boundary conditions can be applied. We consider three typical prestress modes (confining, uniaxial, and pure shear), each of which takes into account the incidence of upgoing and downgoing P and S waves. The Knott equations under different types of prestresses are derived, followed by the estimation of angle-dependent R/T coefficients. The energy conservation at the interface and the acoustoelastic finite-difference simulation of predicted P and S modes verify the correctness of the angle-dependent R/T coefficients under confining prestress. Comparisons with the elastic case (prestress [Formula: see text]) indicate the important influence of prestresses on the energy distribution of reflected and transmitted waves, including stress-dependent critical angles, converted waves, and R/T energy ratios. Such acoustoelastic effects mainly occur around/after the critical angle. For small-angle incidence, prestresses mainly affect the gradient of R/T coefficients. The type and magnitude of prestress are closely related to the angle-dependent R/T coefficients and must be considered for amplitude-variation-with-offset analysis in prestressed media.

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Publisher

Society of Exploration Geophysicists

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3