Fast 2-D ray+Born migration/inversion in complex media

Author:

Thierry Philippe1,Operto Stéphane1,Lambaré Gilles1

Affiliation:

1. Ecoles des Mines de Paris, ARMINES‐GEOPHY, 35 rue Saint Honore, 77305 Fontainebleau Cedex, France. Emails:

Abstract

In this paper, we evaluate the capacity of a fast 2-D ray+Born migration/inversion algorithm to recover the true amplitude of the model parameters in 2-D complex media. The method is based on a quasi‐Newtonian linearized inversion of the scattered wavefield. Asymptotic Green’s functions are computed in a smooth reference model with a dynamic ray tracing based on the wavefront construction method. The model is described by velocity perturbations associated with diffractor points. Both the first traveltime and the strongest arrivals can be inverted. The algorithm is implemented with several numerical approximations such as interpolations and aperture limitation around common midpoints to speed the algorithm. Both theoritical and numerical aspects of the algorithm are assessed with three synthetic and real data examples including the 2-D Marmousi example. Comparison between logs extracted from the exact Marmousi perturbation model and the computed images shows that the amplitude of the velocity perturbations are recovered accurately in the regions of the model where the ray field is single valued. In the presence of caustics, neither the first traveltime nor the most energetic arrival inversion allow for a full recovery of the amplitudes although the latter improves the results. We conclude that all the arrivals associated with multipathing through transmission caustics must be taken into account if the true amplitude of the perturbations is to be found. Only 22 minutes of CPU time is required to migrate the full 2-D Marmousi data set on a Sun SPARC 20 workstation. The amplitude loss induced by the numerical approximations on the first traveltime and the most energetic migrated images are evaluated quantitatively and do not exceed 8% of the energy of the image computed without numerical approximation. Computational evaluation shows that extension to a 3-D ray+Born migration/inversion algorithm is realistic.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3