Simultaneous estimation of total magnetization direction and 3-D spatial orientation

Author:

Medeiros Walter E.1,Silva João B.C.1

Affiliation:

1. Dept. Geofísica, Federal University of Pará, Caixa Postal 1611, CEP 66.017-900, Belém, PA Brazil

Abstract

Magnetic interpretations are usually carried out either by assuming induced magnetization and estimating the model geometry, or by presuming a known source spatial orientation to estimate the total magnetization. We present a 3-D magnetic interpretation method that estimates simultaneously the total magnetization direction and the spatial orientation of the source. It is based on the approximation of the anomaly by the series derived from expanding the magnetic potential into multipoles and retaining source moments up to second order. The moments and linear combinations of moments appearing in the series are then inverted from the magnetic anomaly. The total magnetization is assumed constant in direction but not in magnitude. It is also presumed implicitly that the anomalous distribution of magnetization intensity has nonzero values in a finite‐volume region, is far from the observation points, and presents three othogonal planes of symmetry intersecting at the center of the dipole moment. The method is essentially linear and requires no a priori explicit assumption of a fixed geometry for the sources. The method is particularly suited to interpret compact, isolated or disjoint, but spatially correlated sources. If the source satisfies all assumptions presumed by the method, it is possible to obtain accurate, stable estimates of the total dipole moment vector, the position of the center of dipole moment, and the directions of all three principal axes of symmetry. If the source is not far from the observation plane and/or if the total magnetization direction is not constant, it is still possible to obtain accurate and stable estimates of the direction of the mean total magnetization and the projection, on the observation plane, of the center of dipole moment. The method is applied to magnetic data from the Gulf of Guinea Seamount. The estimated magnetic palaeopole is at 50°48′S and 74°54′E which is in good agreement with estimates published by other authors.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3