High-Precision Joint Magnetization Vector Inversion Method of Airborne Magnetic and Gradient Data with Structure and Data Double Constraints

Author:

Ma GuoqingORCID,Zhao Yanan,Xu Bowen,Li Lili,Wang Taihan

Abstract

Airborne magnetic and gradient measurements are commonly used geophysical remote sensing tools to obtain the distribution features of ore mineral bodies. It is known that ore mineral bodies generally contain remanent magnetization, and magnetization vector inversion (MVI) can produce the magnetization intensity and direction of the source, which is more suitably used to interpret measured airborne magnetic and gradient data. To accurately reveal the underground magnetization vector distribution, we proposed a high-precision method with double constraints on the data and physical structure, and we used the cross-gradient inversion of airborne magnetic anomalies and the combination matrix of airborne magnetic and gradient (CMG) data to recover the physical parameters of the sources with different depths. We used the combination matrix to produce the different component data constraints and the cross-gradient function to finish the inversion to provide structural constraints. For anomaly sources at similar depths, joint inversion based on the cross-gradient of magnetic gradient data and CMG data is more suitably used. The superiority of the double constraints method is proven by theoretical model tests. We apply the proposed method to interpret airborne magnetic and gradient data in Shandong Province to detect iron mineral resources, and we select the cross-gradient inversion of airborne magnetic anomalies and CMG data depending on the nonlinear features of the power spectrum. The main ore bodies have a northeast distribution with a depth range of 1048–1800 m, successfully giving the distribution range of the high-magnetic bodies; a better mineral potential is in the northern part of the survey area.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3