Seismic imaging beyond depth migration

Author:

Berkhout A. J.,Verschuur D. J.1

Affiliation:

1. Delft University of Technology, Laboratory of Seismics and Acoustics, Department of Applied Physics, Post Office Box 5046, 2600 GA Delft, The Netherlands. Emails:

Abstract

If seismic imaging is formulated in terms of two focusing steps—focusing in emission and focusing in detection (or vice versa)—the output of the first focusing step yields a new type of seismic gather, the common‐focus‐point (CFP) gather, which is available for data analysis and information extraction. One important consequence of this novel option is that the involved focusing operators can be updated without updating the underlying velocity model. Introducing the concept of “dynamic focusing,” it is proposed to verify the validity of focusing operators by comparing the “gather of focus‐point responses” with the “gather of focusing operators.” Compared with velocity‐driven time and depth migration, operator‐driven CFP migration can be considered as the most general approach to seismic imaging: it does not require a velocity model, and it automatically takes into account unknown complex propagation effects such as conversion, anisotropy, and dispersion. In addition, in CFP migration, the second focusing step can be extended to produce both angle‐averaged reflection information and angle‐dependent reflection information. The CFP approach to seismic migration allows new solutions in the situation of complex near‐surface layers, subsalt targets, multicomponent processing, and time lapse analysis.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference24 articles.

1. Velocity analysis by iterative profile migration

2. Alá’i, R., 1997, Improving predrilling views by pseudo seismic borehole data: Ph.D. thesis, Delft Univ. of Technology.

3. Multiple removal based on the feedback model

4. Multiple removal based on the feedback model

5. Multiple removal based on the feedback model

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3