Reservoir and sealing properties of the Newark rift basin formations: Implications for carbon sequestration

Author:

Zakharova N. V.12,Goldberg D. S.2,Olsen P. E.2,Collins D.3,Kent D. V.24

Affiliation:

1. Central Michigan University, Department of Earth and Atmospheric Sciences, Mount Pleasant, Michigan, USA..

2. Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA..

3. Geostock Sandia LLC, Houston, Texas, USA..

4. Rutgers University, Department of Earth and Planetary Sciences, Piscataway, New Jersey, USA..

Abstract

The Newark Basin is one of the major Mesozoic rift basins along the U.S. Atlantic coast evaluated for carbon dioxide (CO2) storage potential. Its geologic setting offers an opportunity to assess both the traditional reservoir targets, e.g., fluvial sandstones, and less traditional options for CO2 storage, e.g., mafic intrusions and lavas. Select samples from the basal, predominantly fluvial, Stockton Formation are characterized by relatively high porosity (8%–18%) and air permeability (0.1–50 mD), but borehole hydraulic tests suggest negligible transmissivity even in the high-porosity intervals, emphasizing the importance of scale in evaluating reservoir properties of heterogeneous formations. A stratigraphic hole drilled by TriCarb Consortium for Carbon Sequestration in the northern basin also intersected numerous sandstone layers in the predominantly lacustrine Passaic Formation, characterized by core porosity and permeability up to 18% and 2000 mD. However, those layers are shallow (predominantly above 1 km in this part of the basin) and lack prominent caprock layers above. The mudstones in all three of the major sedimentary formations (Stockton, Lockatong, and Passaic) are characterized by a high CO2 sealing capacity — evaluated critical CO2 column heights exceed several kilometers. The igneous options are represented by basalt lavas, with porous flow tops and massive flow interiors, and a crystalline but often densely fractured Palisade Sill. The Newark Basin basalts may be too shallow for sequestration over most of the basin's area, but many other basalt flows exist in similar rift basins. Abundant fractures in sedimentary and igneous rocks are predominantly closed and/or sealed by mineralization, but stress indicators suggest high horizontal compressional stresses and strong potential for reactivation. Overall, the basin potential for CO2 storage appears low, but select formation properties are promising and could be investigated in the Newark Basin or other Mesozoic rift basins with similar fill but a different structural architecture.

Funder

US Department of Energy, National Energy Technology Laboratory

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference49 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3