Workflow for improvement of 3D anisotropic CSEM resistivity inversion and integration with seismic using cross-gradient constraint to reduce exploration risk in a complex fold-thrust belt in offshore northwest Borneo

Author:

Meju Max A.1,Saleh Ahmad Shahir2,Mackie Randall L.3,Miorelli Federico3,Miller Roger V.1,Mansor Noor Kartini S.1

Affiliation:

1. Petronas Upstream, Kuala Lumpur, Malaysia..

2. Petronas Upstream, Kuala Lumpur, Malaysia and Universiti Sains Malaysia, Penang, Malaysia..

3. CGG Multi-Physics Imaging, Milan, Italy..

Abstract

The focus of hydrocarbon exploration has now moved into frontier regions where structural complexity, heterogeneous overburden, and hydrocarbon system fundamentals are significant challenges requiring an integrated exploration approach. Three-dimensional controlled-source electromagnetic (CSEM) anisotropic resistivity imaging is emerging as a technique to combine with seismic imaging in such regions. However, the typically reconstructed horizontal resistivity [Formula: see text] and vertical resistivity [Formula: see text] models often have conflicting depth structures that are difficult to explain in terms of subsurface geology. It is highly desirable to reduce ambiguity or subjectivity in depth interpretation of [Formula: see text] and [Formula: see text] models and also achieve comparability with other coincidentally located subsurface models. We have developed a workflow for integrating information from seismic well-based inversion, interpreted seismic horizons, and resistivity well logs in a cross-gradient-guided simultaneous 3D CSEM inversion for geologically realistic [Formula: see text] and [Formula: see text] models whose parameter estimates for a selected reservoir interval can then be better optimized to aid reservoir characterization. We developed our workflow using exploration data from a complex fold-thrust belt. We found that the integrated cross-gradient approach led to [Formula: see text] and [Formula: see text] models that have a common depth structure, are consistent with seismic and resistivity logs, and are hence less ambiguous for geologic interpretation and reservoir parameter estimation.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3