Two-Dimensional Magnetotelluric Parallel-Constrained-Inversion Using Artificial-Fish-Swarm Algorithm

Author:

Hu Zuzhi1ORCID,Shi Yanling1,Liu Xuejun1,He Zhanxiang23ORCID,Xu Ligui1,Mi Xiaoli1,Liu Juan1

Affiliation:

1. BGP Inc., CNPC, Zhuozhou 072751, China

2. Guangdong Provincial Key Laboratory of Geophysical High-Resolution Imaging Technology, SUSTech, Shenzhen 518055, China

3. Department of Earth and Space Science, SUSTech, Shenzhen 518055, China

Abstract

An important way to improve the resolution of electromagnetic exploration is by using known seismic and logging data. Based on previous work, 2D magnetotelluric (MT) parallel-constrained-inversion, based on an artificial-fish-swarm algorithm is further developed. The finite-difference (FD) method with paralleling frequency is used for 2D MT-forward-modeling, to improve computational efficiency. The results of the FD and finite-element (FE) methods show that the accuracy of FD is comparable to FE in the case of suitable mesh-generation; however, the calculation speed is ten times faster than that of the FE. The artificial-fish-swarm algorithm is introduced and applied to parallel-constrained-inversion of 2D MT data. The results of the synthetic-model test show that the artificial-fish-swarm-inversion based on paralleling forward can recover the model well and effectively improve the inversion speed. The processing and interpretation results of the field data are verified by drilling, which shows that the proposed inversion-method has good practicability.

Funder

the Science Research and Technology Development Projects of CNPC

National Natural Science Foundation of China

Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology

Shenzhen Science and Technology Project

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3