Near-surface and anisotropy modeling for efficient land seismic depth imaging in low-relief geology

Author:

Colombo Daniele1ORCID,Sandoval-Curiel Ernesto1,Ris Mats2,Seeni Salvarajah2

Affiliation:

1. Geophysics Technology, EXPEC Advanced Research Center, Dhahran, Saudi Aramco..

2. Eastern Area Exploration Department, Dhahran, Saudi Aramco..

Abstract

Prestack depth migration of land data presents unique characteristics and challenges that distinguish it from the workflows applied for marine data. Such unique characteristics are primarily related to the near surface. In areas of low-relief geology, near-surface velocity variations can obscure the reservoir structure. The remaining deeper earth model section has good lateral continuity and can be described effectively by smooth velocity fields. Strategies for estimating the near-surface effects and incorporating them into a processing workflow are of primary importance for the successful depth imaging of land seismic data. The second important aspect of a depth imaging workflow is that the seismic image must honor the well markers or formation tops. The subhorizontal fine-scale layering of low-relief structures can cause anisotropy that needs to be taken into account to achieve accurate well ties and good image quality. We have evaluated the application of an efficient workflow to achieve fast and reliable depth imaging in layered geology; this involves the decomposition of the near-surface velocity into short-, medium-, and long-wavelength terms followed by reflection velocity analysis and anisotropic parameter scanning. The long-wavelength components are solved by dynamic velocity analysis, whereas the medium- and short-wavelength terms are evaluated by surface-consistent analysis applied to refracted and reflected data. Interaction with seismic interpreters and geology-consistent updates mitigates the possibility of introducing errors in areas not covered by wells. The workflow is applied to a structure-controlled wadi in central Saudi Arabia showing complex near-surface conditions and imaging problems. The study incorporates high-resolution helicopter-borne transient electromagnetic data that are used to constrain seismic traveltime inversion through cross-gradient structural regularization (joint inversion). Fast and robust depth imaging constrained by well data is obtained through accurate estimation of near-surface velocities, anisotropy, and geology-consistent analysis.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Supervised, Active Learning Seismic Full Waveform Inversion;GEOPHYSICS;2023-12-20

2. Near-surface full-waveform inversion in a transmission surface-consistent scheme;GEOPHYSICS;2021-02-15

3. High-resolution near-surface Laplace-Fourier FWI in a surface-consistent framework;SEG Technical Program Expanded Abstracts 2020;2020-09-30

4. Near-surface modelling technologies for accurate land data depth imaging in lowrelief geology;International Conference on Engineering Geophysics, Al Ain, United Arab Emirates, 9-12 October 2017;2017-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3