A comparative study of texture attributes for characterizing subsurface structures in seismic volumes

Author:

Long Zhiling1,Alaudah Yazeed1,Ali Qureshi Muhammad2,Hu Yuting1,Wang Zhen1,Alfarraj Motaz1,AlRegib Ghassan1,Amin Asjad2,Deriche Mohamed3,Al-Dharrab Suhail3,Di Haibin1

Affiliation:

1. Georgia Institute of Technology, Center for Energy and Geo Processing (CeGP) at Georgia Tech and KFUPM, School of Electrical and Computer Engineering, Atlanta 30332-0250, USA..

2. The Islamia University of Bahawalpur, Department of Telecommunication Engineering, 63100, Pakistan..

3. King Fahd University of Petroleum and Minerals (KFUPM), Center for Energy and Geo Processing (CeGP) at Georgia Tech and KFUPM, Department of Electrical Engineering, Dhahran 31261, Saudi Arabia..

Abstract

We have explored how to computationally characterize subsurface geologic structures presented in seismic volumes using texture attributes. For this purpose, we conduct a comparative study of typical texture attributes presented in the image processing literature. We focus on spatial attributes in this study and examine them in a new application for seismic interpretation, i.e., seismic volume labeling. For this application, a data volume is automatically segmented into various structures, each assigned with its corresponding label. If the labels are assigned with reasonable accuracy, such volume labeling will help initiate an interpretation process in a more effective manner. Our investigation proves the feasibility of accomplishing this task using texture attributes. We also identify the advantages and disadvantages associated with each attribute.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Counterfactual uncertainty for high dimensional tabular dataset;Third International Meeting for Applied Geoscience & Energy Expanded Abstracts;2023-12-14

2. Seismic Fault Segmentation Using Unsupervised Domain Adaptation;2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA);2023-12-04

3. Explainable machine learning for hydrocarbon prospect risking;GEOPHYSICS;2023-10-11

4. Depth domain adaptive weighted multimodal multitask learning acoustic impedance inversion;CHINESE J GEOPHYS-CH;2023

5. Active learning with deep autoencoders for seismic facies interpretation;GEOPHYSICS;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3