Active learning with deep autoencoders for seismic facies interpretation

Author:

Mustafa Ahmad1ORCID,AlRegib Ghassan2ORCID

Affiliation:

1. Georgia Institute of Technology, School of Electrical and Computer Engineering, Omni Laboratory for Intelligent Visual Engineering and Science (OLIVES), Atlanta, Georgia, USA. (corresponding author)

2. Georgia Institute of Technology, School of Electrical and Computer Engineering, Omni Laboratory for Intelligent Visual Engineering and Science (OLIVES), Atlanta, Georgia, USA.

Abstract

Machine-learning (ML)-assisted seismic interpretation tasks require large quantities of labeled data annotated by expert interpreters, which is a costly and time-consuming process. Whereas existing works to minimize dependence on labeled data assume the data annotation process to already be completed, active learning — a field of ML — works by selecting the most important training samples for the interpreter to annotate in real time simultaneously with the training of the interpretation model itself, resulting in high levels of performance with fewer labeled data samples than otherwise possible. Whereas there exists significant literature on active learning for classification tasks with respect to natural images, there exists very little to no work for dense prediction tasks in geophysics such as interpretation. We have developed a unique and first-of-its-kind active learning framework for seismic facies interpretation using the manifold learning properties of deep autoencoders. By jointly learning representations for supervised and unsupervised tasks and then ranking unlabeled samples by their nearness to the data manifold, we can identify the most relevant training samples to be labeled by the interpreter in each training round. On the popular F3 data set, we obtain close to a 10% point difference in terms of the interpretation accuracy between the proposed method and the baseline with only three fully annotated seismic sections.

Funder

ML4Seismic Consortium

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. What samples must seismic interpreters label for efficient machine learning?;Third International Meeting for Applied Geoscience & Energy Expanded Abstracts;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3