Affiliation:
1. University of Karlsruhe, Geophysical Institute, Hertzstr. 16, 76187 Karlsruhe, Germany.
Abstract
Kinematic information for constructing velocity models can be extracted in a robust way from seismic prestack data with the common‐reflection‐surface (CRS) stack. This data‐driven process results, in addition to a simulated zero‐offset section, in a number of wavefront attributes—wavefront curvatures and normal ray emergence angles—associated with each simulated zero‐offset sample. A tomographic inversion method is presented that uses this kinematic information to determine smooth, laterally heterogeneous, isotropic subsurface velocity models for depth imaging. The input for the inversion consists of wavefront attributes picked at a number of locations in the simulated zero‐offset section. The smooth velocity model is described by B‐splines. An optimum model is found iteratively by minimizing the misfit between the picked data and the corresponding modeled values. The required forward‐modeled quantities are obtained during each iteration by dynamic ray tracing along normal rays pertaining to the input data points. Fréchet derivatives for the tomographic matrix are calculated by ray perturbation theory. The inversion procedure is demonstrated on a 2D synthetic prestack data set.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
132 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献