Common-Reflection-Surface Stack with Global Simultaneous Multi-Parameter Velocity Analysis—A Fit for Shallow Seismics

Author:

Heilmann Zeno1ORCID,Deidda Gian Piero2ORCID

Affiliation:

1. CRS4 (Center for Advanced Studies, Research, and Development in Sardinia), Digital Technologies for Aerospace Department, loc. Piscina Manna, 09050 Pula, CA, Italy

2. Department of Civil and Environmental Engineering and Architecture, University of Cagliari, via Marengo 2, 09123 Cagliari, CA, Italy

Abstract

In many regions, particularly coastal areas, population growth, overuse of water, and climate change have put quality and availability of water under threat. While accurate, predictive groundwater flow models are essential for effective water resource management, the precision of these models relies on the ability to determine the geometries of geological structures and hydrogeologic systems accurately. In complex geological settings or with deep aquifers, the drilling of observation wells becomes too costly and shallow seismic surveys become the method of choice. Common-Reflection-Surface stacking is being used by major oil companies for hydrocarbon exploration but can serve also as an advanced imaging method for near-surface seismic data. Its spatial stacking aperture covers a whole group of neighboring common midpoint gathers and, as such, a multitude of traces contribute to every single stacking process. Since the level of noise suppression is proportional to the number of contributing traces, Common-Reflection-Surface stacking generates a large increase in signal-to-noise ratio. In addition, the data-driven velocity analysis is a statistical process and is, as such, the more stable the more input traces it has. At the beginning, however, the spatial operator was only used for stacking, not for velocity analysis, since limiting computational demand was mandatory to obtain results within a reasonable time frame. Today’s computing facilities are thousands of times faster and even large efficiency gains do not justify the loss of effectiveness anymore that comes with a truncated velocity analysis. We show that this is particularly true for near-surface data with low signal-to-noise ratio and modest common midpoint fold. For the spatial velocity analysis, we present two options: (1) as reference, a global search of all three parameters of the Common-Reflection-Surface operator, and (2) as a quicker solution, a strategy that uses the two-parameter Common-Diffraction-Surface operator to obtain initial values for a local three-parameter optimization. For shallow P-wave data from a hydrogeological survey, we show that the computational cost of option (2) is one order of magnitude smaller than the cost of option (1), while the stack and corresponding normal-moveout velocities are very similar. Comparing the results of the spatial velocity analysis to those of preceding, computationally lighter, strategies, we find a significant improvement, both in stack section resolution and stacking parameter accuracy.

Funder

Autonomous Region of Sardinia

University of Cagliari

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3