Differential reduction‐to‐the‐pole of regional magnetic anomalies

Author:

Arkani‐Hamed J.1

Affiliation:

1. Department of Geological Sciences, Brock University, St. Catharines, Ont., Canada L2S 3A1

Abstract

I present a differential reduction‐to‐the‐pole technique that reduces regional scale magnetic anomalies to the geomagnetic pole, while taking into account the variations in the direction of the geomagnetic field and that of the magnetization of the crust over the region. The technique is developed in the spectral frequency domain as an inverse problem solved iteratively using a perturbation method. I regard the variations in the directions as finite perturbations about the mean values of the directions over the region and evaluate the nonlinear coupling terms due to these perturbations in the space domain at each iteration before transforming them into the spectral frequency domain. The technique is applied to the magnetic anomalies of three semiinfinite prisms, which are inductively magnetized and located at high, mid, and low latitudes in a region where the inclination of the ambient field changes from 10 to 90 degrees and its declination changes from −30 to +30 degrees. The differential reduction to the pole shifts the positive anomaly of the low‐latitude prism toward the north more than it shifts that of the mid‐latitude prism, which in turn is shifted northward more than that of the high‐latitude prism. The reduction also suppresses the negative lobes to the north of the mid and low‐latitude prisms and moves the positive anomalies to points directly over the prisms. I also apply the technique to the marine magnetic anomalies off the east coast of Canada. The positive magnetic anomalies in the southern part of the area are displaced northward by about 30 km, whereas those in the northern part are not moved significantly.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3