Early‐Precambrian crystalline basement beneath the Upper Yangtze Block from regional aeromagnetic anomalies: Depth from extreme points approach

Author:

Li Yuanyuan1,Teng Jiwen234,Yang Yushan1,Liu Tianyou1,Yan Yafen2

Affiliation:

1. Hubei Subsurface Multi‐Scale Imaging Key Laboratory, School of Geophysics and Geomatics China University of Geosciences (Wuhan) Wuhan Hubei China

2. Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China

3. College of Geoexploration Science and Technology Jilin University Changchun Jilin China

4. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

Abstract

AbstractAlthough the early‐Precambrian crystalline basement is now only sporadically exposed in the northern and south‐western parts of the Yangtze Block, it is supposed to have a widespread distribution beneath its Neoproterozoic and Phanerozoic covers. Here we present results of regional aeromagnetic data processing in consideration of remanent magnetization to investigate the spatial distribution of the early‐Precambrian basement buried deep under the Upper Yangtze Block and surrounding areas. The direct analytic signal amplitude of the aeromagnetic anomalies, which is less affected by the magnetization direction, reveals a broader basement below the Sichuan Basin, extending far north to the Micang Mountain. A comparison between the direct analytic signal amplitude with the reduction to the pole aeromagnetic anomalies indicates that possible remanent magnetization exists beneath the Micang Mountain near the boundary between the Qinling Orogen and Sichuan Basin. The automatic depth from extreme points transform is then performed on the direct analytic signal amplitude to estimate the depth to the early‐Precambrian crystalline basement. A synthetic model of a magnetic interface with remanent magnetization and random noise shows that the depth from extreme points method is able to resolve variable basement depths. Application of the depth from extreme points method to the direct analytic signal amplitude of the Upper Yangtze Block presents meaningful results about the early‐Precambrian crystalline basement undulations. It is shallow and uplifted beneath the Sichuan Basin, extending north to the Qinling‐Dabie Orogen, probably corresponding to the ancient Chuanzhong palaeo‐uplift. Although it gradually deepens to the east, the deepest basement is buried under the Jiangnan Orogen, which is likely associated with the collision‐induced crustal thickening between the Yangtze and Cathaysia blocks during the assembly of the Columbia supercontinent. Large gas fields around the Sichuan Basin are found at the slopes or depressions between basement uplifts, indicating that the deep marine carbonate rocks in the south and east of Sichuan Basin, particularly those located at the slopes or depressions between ancient basement uplifts, are favourable targets for further petroleum exploration.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3