A visual data-mining methodology for seismic facies analysis: Part 1 — Testing and comparison with other unsupervised clustering methods

Author:

Marroquín Iván Dimitri123,Brault Jean-Jules123,Hart Bruce S.123

Affiliation:

1. Formerly McGill University, Earth & Planetary Sciences Department, Montréal, Canada; presently Paradigm, Houston, Texas, U.S.A. .

2. École Polytechnique Montréal, Département de Génie électrique, Campus de 1’Université de Montréal, Montréal, Canada. .

3. Formerly McGill University, Earth & Planetary Sciences Department, Montréal, Canada; presently ConocoPhillips, Houston, Texas, U.S.A. .

Abstract

Seismic facies analysis aims to identify clusters (groups) of similar seismic trace shapes, where each cluster can be considered to represent variability in lithology, rock properties, and/or fluid content of the strata being imaged. Unfortunately, it is not always clear whether the seismic data has a natural clustering structure. Cluster analysis consists of a family of approaches that have significant potential for classifying seismic trace shapes into meaningful clusters. The clustering can be performed using a supervised process (assigning a pattern to a predefined cluster) or an unsupervised process (partitioning a collection of patterns into groups without predefined clusters). We evaluate and compare different unsupervised clustering algorithms (e.g., partition, hierarchical, probabilistic, and soft competitive models) for pattern recognition based entirely on the characteristics of the seismic response. From validation results on simple data sets, we demonstrate that a self-organizing maps algorithm implemented in a visual data-mining approach outperforms all other clustering algorithms for interpreting the cluster structure. We apply this approach to 2D seismic models generated using a discrete, known number of different stratigraphic geometries. The visual strategy recovers the correct number of end-member seismic facies in the model tests, showing that it is suitable for pattern recognition in highly correlated and continuous seismic data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3