Assessing similarity in continuous seismic cross-correlation functions using hierarchical clustering: application to Ruapehu and Piton de la Fournaise volcanoes

Author:

Yates Alexander1ORCID,Caudron Corentin12ORCID,Lesage Philippe1,Mordret Aurélien1ORCID,Lecocq Thomas3ORCID,Soubestre Jean14ORCID

Affiliation:

1. Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel , ISTerre, 38000 Grenoble, France

2. Laboratoire G-Time, Department of Geosciences, Environment and Society, Université libre de Bruxelles , 1050 Bruxelles, Belgium

3. Seismology and Gravimetry Department, Royal Observatory of Belgium , 1180 Uccle, Belgium

4. Icelandic Meteorological Office , 150 Reykjavík, Iceland

Abstract

SUMMARY Passive seismic interferometry has become a popular technique towards monitoring. The method depends on the relative stability of background seismic sources in order to make repeatable measurements of subsurface properties. Such stability is typically assessed by examining the similarity of cross-correlation functions through time. Thus, techniques that can better assess the temporal similarity of cross-correlation functions may aid in discriminating between real subsurface processes and artificial changes related variable seismic sources. In this study, we apply agglomerative hierarchical clustering to cross-correlation functions computed using seismic networks at two volcanoes. This allows us to form groups of data that share similar characteristics and also, unlike common similarity measures, does not require a defined reference period. At Piton de la Fournaise (La Réunion island), we resolve distinct clusters that relate both to changes in the seismic source (volcanic tremor onset) and changes in the medium following volcanic eruptions. At Mt Ruapehu (New Zealand), we observe a consistency to cross-correlation functions computed in the frequency band of volcanic tremor, suggesting tremor could be useful as a repeatable seismic source. Our results demonstrate the potential of hierarchical clustering as a similarity measure for cross-correlation functions, suggesting it could be a useful step towards recognizing structure in seismic interferometry data sets. This can benefit both decisions in processing and interpretations of observed subsurface changes.

Funder

Ministère de l’Enseignement Supérieur, de la Recherche Scientifique et des Technologies de l'Information et de la Communication

Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference58 articles.

1. Applications of clustering in exploration seismology;Aminzadeh;Geoexploration,1984

2. Ambient seismic noise interferometry in Hawai’i reveals long-range observability of volcanic tremor;Ballmer;Geophys. J. Int.,2013

3. A note on the multiplying factors for various χ2 approximations;Bartlett;J. R. Stat. Soc., B,1954

4. Dissimilarity measures for the identification of earthquake focal mechanisms;Benvegna,2013

5. Machine learning for data-driven discovery in solid Earth geoscience;Bergen;Science,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3