Deep learning network optimization and hyperparameter tuning for seismic lithofacies classification

Author:

Jervis Michael1,Liu Mingliang2,Smith Robert3

Affiliation:

1. Formerly EXPEC Advanced Research Center, Saudi Aramco; presently independent consultant, Austin, Texas, USA..

2. Formerly Aramco Research Center, Aramco Services Company; presently postdoctoral fellow, Stanford University, Stanford, California, USA..

3. EXPEC Advanced Research Center, Saudi Aramco, Dhahran, Saudi Arabia..

Abstract

Deep learning is increasingly being applied in many aspects of seismic processing and interpretation. Here, we look at a deep convolutional neural network approach to multiclass seismic lithofacies characterization using well logs and seismic data. In particular, we focus on network performance and hyperparameter tuning. Several hyperparameter tuning approaches are compared, including true and directed random search methods such as very fast simulated annealing and Bayesian hyperparameter optimization. The results show that improvements in predictive capability are possible by using automatic optimization compared with manual parameter selection. In addition to evaluating the prediction accuracy's sensitivity to hyperparameters, we test various types of data representations. The choice of input seismic data can significantly impact the overall accuracy and computation speed of the optimized networks for the classification challenge under consideration. This is validated on a 3D synthetic seismic lithofacies example with acoustic and lithologic properties based on real well data and structure from an onshore oil field.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference18 articles.

1. Di, H., Z. Wang, and G. AlRegib, 2018, Deep convolutional neural networks for seismic salt-body delineation: Annual Convention and Exhibition, AAPG, Extended Abstracts, https://doi.org/10.1306/70630Di2018.

2. Deep-learning seismic facies on state-of-the-art CNN architectures

3. Very fast simulated re-annealing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3