NUMERICAL SOLUTIONS OF THE RESPONSE OF A TWO‐DIMENSIONAL EARTH TO AN OSCILLATING MAGNETIC DIPOLE SOURCE

Author:

Stoyer C. H.1,Greenfield Roy J.1

Affiliation:

1. Pennsylvania State University, University Park, Pennsylvania 16802

Abstract

A finite difference formulation is developed for computing the frequency domain electromagnetic fields due to a point source in the presence of two‐dimensional conductivity structures. Computing costs are minimized by reducing the full three‐dimensional problem to a series of two‐dimensional problems. This is accomplished by Fourier transforming the problem into the x-wavenumber [Formula: see text] domain; here the x-direction is parallel to the structural strike. In the [Formula: see text] domain, two coupled partial differential equations for [Formula: see text] and [Formula: see text] are obtained. These equations resemble those of two coupled transmission sheets. For a requisite number of [Formula: see text] values these equations are solved by the finite difference method on a rectangular grid on the y-z plane. Application of the inverse Fourier transform to the solutions thus obtained gives the electric and magnetic fields in the space domain. The formulation is general; complex two‐dimensional structures containing either magnetic or electric dipole sources can be modeled. A quantitative test of accuracy is presented which compares the finite difference results to analytic results for a magnetic dipole on a homogeneous half‐space. In addition, the computed results for a two‐dimensional model are qualitatively compared to published results for a three‐dimensional analog model. Synthetic field data for surveys over several different bodies of anomalous conductivity are presented. Two of these demonstrate the nonuniqueness of single frequency data interpretation. Results also show that the characteristic form of the response given by the anomalous body can be heavily dependent upon the structure of the host medium. This is especially true for horizontal magnetic dipole source surveys.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3