Protecting the weak signals in distributed acoustic sensing data processing using local orthogonalization: The FORGE data example

Author:

Oboué Yapo Abolé Serge Innocent1,Chen Yunfeng2ORCID,Fomel Sergey3ORCID,Chen Yangkang3ORCID

Affiliation:

1. Zhejiang University, Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, Hangzhou, China.

2. Zhejiang University, Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, Hangzhou, China. (corresponding author)

3. The University of Texas at Austin, Bureau of Economic Geology, University Station, Austin, Texas, USA.

Abstract

The development of the distributed acoustic sensing (DAS) technique enables us to record seismic data at a significantly improved spatial sampling rate at meter scales, which offers new opportunities for high-resolution subsurface imaging. However, DAS recordings are often characterized by a low signal-to-noise ratio (S/N) due to the presence of data noise, significantly degrading the reliability of imaging and interpretation. Current DAS data noise reduction methods remain insufficient in simultaneously preserving weak signals and eliminating various types of noise. Particularly when dealing with DAS data that are contaminated by four types of noise (i.e., high-frequency noise, high-amplitude erratic noise, horizontal noise, and random background noise), it becomes challenging to attenuate the strong noise while maintaining fine-scale features. To address these issues, we develop an integrated local orthogonalization (LO) method that can remove a mixture of different types of noise while protecting the useful signal. Our LO method effectively eliminates the aforementioned noise by concatenating multiple denoising operators including a band-pass filter, a structure-oriented, spatially varying median filter, a dip filter in the frequency-wavenumber domain, and a curvelet filter. Next, the local orthogonalization weighting operator is applied to extract signal energy from the removed noise section. We demonstrate the robustness of our LO method on various challenging DAS data sets from the Frontier Observatory for Research in Geothermal Energy geothermal field. The denoising results demonstrate that our LO method can successfully minimize the levels of different types of noise while preserving the energy of weak signals.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3