Early arrival waveform inversion using data uncertainties and matching filters with application to near-surface seismic refraction data

Author:

Cai Ao1ORCID,Zelt Colin A.2ORCID

Affiliation:

1. Rice University, Department of Earth, Environmental and Planetary Sciences, Houston, Texas, USA. (corresponding author)

2. Rice University, Department of Earth, Environmental and Planetary Sciences, Houston, Texas, USA.

Abstract

We develop an early arrival waveform inversion (EAWI) technique for high-resolution near-surface velocity estimation by iteratively updating the P-wave velocity model to minimize the difference between the observed and calculated seismic refraction data. Traditional EAWI uses a least-squares penalty function and an acoustic forward-modeling engine. Conventional least-squares error is sensitive to data with low signal-to-noise ratio (S/N) and iterations of EAWI stop at a local-minimum data misfit or at the preassigned maximum number of iterations. These stopping criteria can result in overfitting the data. In addition, fitting the elastic field data with an acoustic modeling engine can introduce artifacts in velocity estimation, especially in land data with significant elastic effects. To overcome these challenges, we develop a robust EAWI (REAWI) method by (1) incorporating the data uncertainties into the penalty function and (2) mitigating the elastic effects using a matching filter workflow. The data uncertainties are estimated from waveform reciprocal errors. When full-waveform reciprocity is not available, trace interpolation is applied. The proposed method prevents closely fitting data with low S/N, avoids overall overfitting by stopping the iterations when a normalized chi-square ([Formula: see text]) waveform misfit of one is achieved, and is less affected by elastic effects. Numerical examples and application to near-surface refraction data at a groundwater contamination site suggest that the final REAWI models are more accurate than the corresponding EAWI models, at the same level of misfit. This is the first known application of a matching filter workflow to real land data. The final REAWI models satisfy an appropriate misfit between the real data and predicted elastic P-wave data, making this approach in this respect equivalent to elastic waveform inversion. We also develop a method to analyze model constraint by examining the energy of the wavefield Fréchet derivative thereby avoiding the influence of the data residuals in traditional Fréchet kernels.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3