2D Near‐Surface Full‐Waveform Tomography Reveals Bedrock Controls on Critical Zone Architecture

Author:

Eppinger B. J.1ORCID,Holbrook W. S.1ORCID,Liu Z.23,Flinchum B. A.4ORCID,Tromp J.35ORCID

Affiliation:

1. Department of Geosciences Virginia Polytechnic Institute and State University Blacksburg VA USA

2. Now at Saudi Aramco Dhahran Saudi Arabia

3. Department of Geosciences Princeton University Princeton NJ USA

4. Clemson University Environmental Engineering and Earth Sciences Clemson SC USA

5. Program in Applied & Computational Mathematics Princeton University Princeton NJ USA

Abstract

AbstractFor decades, seismic imaging methods have been used to study the critical zone, Earth's thin, life‐supporting skin. The vast majority of critical zone seismic studies use traveltime tomography, which poorly resolves heterogeneity at many scales relevant to near‐surface processes, therefore limiting progress in critical zone science. Full‐waveform tomography can overcome this limitation by leveraging more seismic data and enhancing the resolution of geophysical imaging. In this study, we apply 2D full‐waveform tomography to match the phases of observed seismograms and elucidate previously undetected heterogeneity in the critical zone at a well‐studied catchment in the Laramie Range, Wyoming. In contrast to traveltime tomograms from the same data set, our results show variations in depth to bedrock ranging from 5 to 60 m over lateral scales of just tens of meters and image steep low‐velocity anomalies suggesting hydrologic pathways into the deep critical zone. Our results also show that areas with thick fractured bedrock layers correspond to zones of slightly lower velocities in the deep bedrock, while zones of high bedrock velocity correspond to sharp vertical transitions from bedrock to saprolite. By corroborating these findings with borehole imagery, we hypothesize that lateral changes in bedrock fracture density majorly impact critical zone architecture. Borehole data also show that our full‐waveform tomography results agree significantly better with velocity logs than previously published traveltime tomography models. Full‐waveform tomography thus appears unprecedentedly capable of imaging the spatially complex porosity structure crucial to critical zone hydrology and processes.

Funder

Division of Earth Sciences

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seismic Tomography 2024;Bulletin of the Seismological Society of America;2024-05-03

2. Expanding the Spatial Reach and Human Impacts of Critical Zone Science;Earth's Future;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3