Affiliation:
1. Utrecht University, Earth Sciences Department, 3584 CB Utrecht, The Netherlands..
2. King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia..
Abstract
In complex geological settings and in the presence of sparse acquisition systems, seismic migration images manifest as non-stationary blurred versions of the unknown subsurface model. Thus, image-domain deblurring is an important step to produce interpretable and high-resolution models of the subsurface. Most deblurring methods focus on inverting seismic images for their underlying reflectivity by iterative least-squares inversion of a local Hessian approximation; this is obtained by either direct modeling of the so-called point spread functions or by a migration-demigration process. In this work, we adopt a novel deep learning framework, based on invertible Recurrent Inference Machines (i-RIMs), which allows approaching any inverse problem as a supervised learning task informed by the known modeling operator (convolution with point-spread functions in our case): the proposed algorithm can directly invert migrated images for impedance perturbation models, assisted with the prior information of a smooth velocity model and the modeling operator. Because i-RIMs are constrained by the forward operator, they implicitly learn to shape/regularise output models in a training-data-driven fashion. As such, the resulting deblurred images show great robustness to noise in the data and spectral deficiencies (e.g., due to limited acquisition). The key role played by the i-RIM network design and the inclusion of the forward operator in the training process is supported by several synthetic examples. Finally, using field data, we show that i-RIM-based deblurring has great potential in yielding robust, high-quality relative impedance estimates from migrated seismic images. Our approach could be of importance towards future Deep-Learning-based quantitative reservoir characterization and monitoring.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献