HDF5eis: A storage and input/output solution for big multidimensional time series data from environmental sensors

Author:

White Malcolm C. A.1ORCID,Zhang Zhendong2ORCID,Bai Tong2ORCID,Qiu Hongrui2ORCID,Chang Hilary2ORCID,Nakata Nori2ORCID

Affiliation:

1. Massachusetts Institute of Technology, Department of Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA. (corresponding author)

2. Massachusetts Institute of Technology, Department of Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA.

Abstract

Modern high-performance computing (HPC) tasks overwhelm conventional geophysical data formats. We describe a new data schema called HDF5eis (read H-D-F-size) for handling big multidimensional time series data from environmental sensors in HPC applications and implement a freely available Python application programming interface (API) for building and processing HDF5eis files. HDF5eis augments the popular Hierarchical Data Format 5 with a minimal set of additional conventions that facilitate fast and flexible data input and output protocols for regularly sampled (in time) data with any number of dimensions. HDF5eis supports arbitrary ancillary data (e.g., metadata) storage in columnar format or as UTF-8 encoded byte streams alongside time series data. Our HDF5eis API enables simple and efficient access to big data sets distributed across a potentially large number of small heterogeneous files through a single point of access. HDF5eis outperforms conventional seismic data formats by up to two orders of magnitude in terms of random read access times. We contribute HDF5eis as an operational tool and an experimental draft proposal that will help establish the next generation of data standards in the earth sciences.

Funder

Southern California Earthquake Center

Japan Organization for Metals and Energy Security

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Object Storage for Distributed Acoustic Sensing;Seismological Research Letters;2023-10-20

2. Geophysics Bright Spots;The Leading Edge;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3