An Object Storage for Distributed Acoustic Sensing

Author:

Ni Yiyu1ORCID,Denolle Marine A.1ORCID,Fatland Rob2ORCID,Alterman Naomi2ORCID,Lipovsky Bradley P.1,Knuth Friedrich3ORCID

Affiliation:

1. 1Department of Earth and Space Sciences, University of Washington, Seattle, Washington, U.S.A.

2. 2eScience Institute, University of Washington, Seattle, Washington, U.S.A.

3. 3Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, U.S.A.

Abstract

Abstract Large-scale processing and dissemination of distributed acoustic sensing (DAS) data are among the greatest computational challenges and opportunities of seismological research today. Current data formats and computing infrastructure are not well-adapted or user-friendly for large-scale processing. We propose an innovative, cloud-native solution for DAS seismology using the MinIO open-source object storage framework. We develop data schema for cloud-optimized data formats—Zarr and TileDB, which we deploy on a local object storage service compatible with the Amazon Web Services (AWS) storage system. We benchmark reading and writing performance for various data schema using canonical use cases in seismology. We test our framework on a local server and AWS. We find much-improved performance in compute time and memory throughout when using TileDB and Zarr compared to the conventional HDF5 data format. We demonstrate the platform with a computing heavy use case in seismology: ambient noise seismology of DAS data. We process one month of data, pairing all 2089 channels within 24 hr using AWS Batch autoscaling.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Reference54 articles.

1. Big data seismology;Arrowsmith;Rev. Geophys.,2022

2. Fault zone imaging with distributed acoustic sensing: Body-to-surface wave scattering;Atterholt;J. Geophys. Res.,2022

3. Dasdae/dascore: v0.0.7;Chambers,2022

4. Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization;Cheng;Sci. Rep.,2021

5. Watching the cryosphere thaw: Seismic monitoring of permafrost degradation using distributed acoustic sensing during a controlled heating experiment;Cheng;Geophys. Res. Lett.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3