Reservoir-oriented wave-equation-based seismic amplitude variation with offset inversion

Author:

Gisolf Dries1,Haffinger Peter R.1,Doulgeris Panos1

Affiliation:

1. Delft Inversion, Delft, The Netherlands..

Abstract

Wave-equation-based amplitude-variation-with-offset (AVO) inversion solves the full elastic wave equation, for the properties as well as the total wavefield in the object domain, from a set of observations. The relationship between the data and the property set to invert for is essentially nonlinear. This makes wave-equation-based inversion a nonlinear process. One way of visualizing this nonlinearity is by noting that all internal multiple scattering and mode conversions, as well as traveltime differences between the real medium and the background medium, are accounted for by the wave equation. We have developed an iterative solution to this nonlinear inversion problem that seems less likely to be trapped in local minima. The surface recorded data are preconditioned to be more representative for the target interval, by redatuming, or migration. The starting model for the inversion is a very smooth (0–4 Hz) background model constructed from well data. Depending on the data quality, the nonlinear inversion may even update the background model, leading to a broadband solution. Because we are dealing with the elastic wave equation and not a linearized data model in terms of primary reflections, the inversion solves directly for the parameters defining the wave equation: the compressibility (1/bulk modulus) and the shear compliance (1/shear modulus). These parameters are much more directly representative for hydrocarbon saturation, porosity, and lithology, than derived properties such as acoustic and shear impedance that logically follow from the linearized reflectivity model. Because of the strongly nonlinear character of time-lapse effects, wave-equation based AVO inversion is particularly suitable for time-lapse inversion. Our method is presented and illustrated with some synthetic data and three real data case studies.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3