Two-dimensional inversion of magnetotelluric/radiomagnetotelluric data by using unstructured mesh

Author:

Özyıldırım Özcan1,Candansayar Mehmet Emin1ORCID,Demirci İsmail1,Tezkan Bülent2

Affiliation:

1. Ankara University, Faculty of Engineering, Department of Geophysical Engineering, Geophysical Modeling Group, Ankara, Turkey..

2. University of Cologne, Institute of Geophysics and Meteorology, Köln, Germany..

Abstract

We have compared structured and unstructured grid-based 2D inversion algorithms for magnetotelluric (MT) and radiomagnetotelluric (RMT) data in terms of speed and accuracy. We have developed a new 2D inversion algorithm for MT and RMT data by using a finite-element (FE) method that uses unstructured triangle grids. We compare the inversion results of our unstructured grid-based algorithm with those of the conventional algorithm, which uses either a structured FE or structured finite-difference (FD) numerical solution technique. The imaging of the surface topography and the underground resistivity structures by the new algorithm requires fewer elements than those that use FE and FD structured grids. We also find that when unstructured grids are used, the quality of the mesh is increased and the numerical errors are significantly reduced. Thus, the program runs faster and can simulate the complex surface topography in a more stable setting than the classic inversion algorithms. Furthermore, we implement a new smoothing matrix format for the unstructured triangle grids for the inversion procedure. We use two samples of synthetic data for the MT and RMT frequencies as well as a sample of field RMT data collected across a fault zone for comparison. In our synthetic data experiment, we find that the resistivity values and the boundaries obtained from the inversion of the unstructured mesh are closer to those of the true a priori synthetic model. Results of the synthetic and field data verify the computational advantages (speed and accuracy) of our inversion algorithm with respect to the conventional structured grid-based inversion algorithms.

Funder

The Scientific and Technological Research Council of Turkey

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3