Rock-physics transforms and scale of investigation

Author:

Dvorkin Jack1ORCID,Wollner Uri1ORCID

Affiliation:

1. Stanford University, Department of Geophysics, Stanford, California, USA..

Abstract

Rock-physics “velocity-porosity” transforms are usually established on sets of laboratory and/or well data with the latter data source being dominant in recent practice. The purpose of establishing such transforms is to (1) conduct forward modeling of the seismic response for various geologically plausible “what if” scenarios in the subsurface and (2) interpret seismic data for petrophysical properties and conditions, such as porosity, clay content, and pore fluid. Because the scale of investigation in the well is considerably smaller than that in reflection seismology, an important question is whether the rock-physics model established in the well can be used at the seismic scale. We use synthetic examples and well data to show that a rock-physics model established at the well approximately holds at the seismic scale, suggest a reason for this scale independence, and explore where it may be violated. The same question can be addressed as an inverse problem: Assume that we have a rock-physics transform and know that it works at the scale of investigation at which the elastic properties are seismically measured. What are the upscaled (smeared) petrophysical properties and conditions that these elastic properties point to? It appears that they are approximately the arithmetically volume-averaged porosity and clay content (in a simple quartz/clay setting) and are close to the arithmetically volume-averaged bulk modulus of the pore fluid (rather than averaged saturation).

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3