Sonic properties as a signature of overpressure in the Marcellus gas shale of the Appalachian Basin

Author:

Zhou Yaneng1,Nikoosokhan Saeid1,Engelder Terry1

Affiliation:

1. Pennsylvania State University, Department of Geosciences, University Park, Pennsylvania, USA..

Abstract

The Marcellus Formation, a Devonian gas shale in the Appalachian Basin, is a heterogeneous rock as the result of a complex depositional, diagenetic, and deformational history. Although it is overpressured over a large portion of its economic area, the origin and distribution of pore pressure within the gas shale are not well-understood. We have used the sonic properties of the Marcellus and statistical analyses to tackle this problem. The sonic data come from a suite of 53 wells including a calibration well in the Appalachian Basin. We first analyze the influence of various extrinsic and intrinsic parameters on sonic velocities with univariate regression analyses. The sonic velocities of the Marcellus in the calibration well generally decrease with an increase in gamma-ray american petroleum institute (API) and increase with density and effective stress. Basin-wide median sonic velocities generally decrease with an increase in median gamma-ray API and pore pressure and increase with burial depth (equivalent confining stress), effective stress, and median density. Abnormal pore pressure is verified by a stronger correlation between the median sonic properties and effective stress using an effective stress coefficient of approximately 0.7 relative to the correlation between the median sonic properties and depth. The relatively small effective stress coefficient may be related to the fact that natural gas, a “soft” fluid, is responsible for a basin-wide overpressure of the Marcellus. Following the univariate regression analyses, we adopt a multiple linear regression model to predict the median sonic velocities in the Marcellus based on median gamma-ray intensity, median density, thickness of the Marcellus, confining pressure, and an inferred pore pressure. Finally, we predict the pore pressure in the Marcellus based on median sonic velocities, median gamma-ray intensity, median density, thickness of the Marcellus, and confining pressure.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3