Reservoir Characteristics and Resource Potential of Marine Shale in South China: A Review

Author:

Zhang Zhiyao,Xu Shang,Gou Qiyang,Li Qiqi

Abstract

Many sets of Paleozoic marine organic-rich shale strata have developed in South China. However, the exploration and development results of these shale formations are quite different. Based on the data of core experiment analysis, drilling, fracturing test of typical wells, the reservoir differences and controlling factors of four sets of typical marine organic-rich shale in southern China are investigated. The four sets of shale have obvious differences in reservoir characteristics. Ordovician–Silurian shale mainly develops siliceous shale, mixed shale and argillaceous shale, with large pore diameter, high porosity, moderate thermal maturity, large pore volume and specific surface area. Cambrian shale mainly develops siliceous shale and mixed shale, with small pore diameter, low porosity, high thermal maturity and smaller pore volume and specific surface area than Ordovician–Silurian shale. Devonian–Carboniferous shale has similar mineral composition to Ordovician–Silurian shale, with small pore diameter, low porosity, moderate thermal maturity and similar pore volume and specific surface area to that of Cambrian shale. Permian shale has very complex mineral composition, with large pore diameter, low to medium thermal maturity and small specific surface area. Mineral composition, thermal maturity and tectonic preservation conditions are the main factors controlling shale reservoir development. Siliceous minerals in Cambrian shale and Ordovician–Silurian shale are mainly of biological origin, which make the support capacity better than Devonian–Carboniferous shale and Permian shale (siliceous minerals are mainly of terrigenous origin and biological origin). Thermal maturity of Ordovician–Silurian shale and Devonian–Carboniferous shale is moderate, with a large number of organic pores developed. Thermal maturity of Cambrian shale and Permian shale is respectively too high and too low, the development of organic pores is significantly weaker than the two sets of shale above. There are obvious differences in tectonic preservation conditions inside and outside the Sichuan Basin. Shale reservoirs inside the Sichuan Basin are characterized by overpressure due to stable tectonic activities, while shale reservoirs outside the Sichuan Basin are generally normal–pressure. Four sets of marine shale in South China all have certain resource potentials, but the exploration and development of shale gas is still constrained by complicated geological conditions, single economic shale formation, high exploration and development costs and other aspects. It is necessary for further research on shale gas accumulation theory, exploration and development technology and related policies to promote the development of China’s shale gas industry.

Funder

National Natural Science Foundation of China

Shandong Provincial Key Research and Development Program

Independent innovation research program of China University of Petroleum

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference139 articles.

1. Energy Information Administration (2015). Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States, Energy Information Administration.

2. China’s shale gas reserves rank first in the world. Sino-Glob;Energy,2019

3. Development progress, potential and prospect of shale gas in China;Nat. Gas Ind.,2021

4. Fractured shale-gas systems;AAPG Bull.,2002

5. Evaluation of Geological Characteristics of the New Albany Shale as a potential Liquids-from-Shale Play in the Illinois Basin;Abstr. Pap. Am. Chem. Soc.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3