New insights into the evaluation criteria for high-quality deep marine shale gas reservoirs in the Longmaxi formation: Evidence from organic matter pore development characteristics

Author:

Zhu Boyuan,Meng Jianghui,Pan Renfang,Hu Haiyan,Song Chen,Zhu Zhengping,Jin Jineng

Abstract

Porosity, total organic carbon content, brittle mineral content, and gas content are now the primary references for classifying and evaluating marine shale gas reservoirs in China. Is there a more effective and appropriate reservoir classification scheme for deep marine shale? The Longmaxi Formation in Luzhou, southern Sichuan Basin, China, is the main object of study. Quantitative analysis and modeling using data from field emission scanning electron microscopy, nitrogen adsorption, and logging were used to characterize organic matter (OM) pore multi-scale development and reveal the relationship between OM pore and the high-quality reservoirs. Microscopic and macroscopic indications from OM pores show that a large number of OM pores were developed in high-quality reservoirs. OM surface porosity occupancy of the high-quality reservoir in the Luzhou area was more than 60%. OM porosity occupancy was more than 50%. The nitrogen adsorption–desorption hysteresis loops demonstrate the development of bottleneck and wedge-shaped OM pores. Characterization of multi-scale pore structure by box dimension, pore volume and specific surface area. It is found that the key to the formation of high-quality reservoirs was the massive development of OM mesopores in siliceous shale and the relatively homogeneity structure, which was conducive to the enrichment and migration of shale gas. Furthermore, the improved model decreased the relative error in predicting the OM porosity by about 32.5%. The use of OM porosity occupancy for high-quality reservoir classification was better, and the results were consistent with geological understanding. OM porosity occupancy showed that the area from Lunanxi to Luzhou to Rongchang to Jiangjin was the key exploration area for high-quality reservoirs in southern Sichuan. This study is expected to provide a new idea for OM pore modeling analysis and deep marine shale gas reservoir classification.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3